Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Microorganisms ; 12(3)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38543671

RESUMO

More than one million sexually transmitted infections (STIs) occur every day, and Trichomonas vaginalis is responsible for more than 156 million cases each year worldwide. Nevertheless, epidemiological studies of this parasite in Europe are scarce. The aim of this study was to evaluate the impact that the COVID-19 pandemic may have had in the diagnosis and epidemiology of trichomoniasis. All available data from January 2018 to December 2021 for T. vaginalis isolation on gynecologic patients attending a Spanish Tertiary Hospital were analyzed. Pre-pandemic results (2018-2019) were compared to pandemic results (2020-2021). The pre-pandemic T. vaginalis prevalence in women was 1.15% (95% Confidence Interval, CI: 0.94-1.41), and significantly decreased in 2020-2021 (0.77%, 95% CI: 0.57-1.03; p = 0.025). Demographic nor clinical characteristics of women diagnosed with trichomoniasis did not statistically differ between the periods, although an increase in chlamydia co-infected patients was observed in the latest (from 8% in 2018-2019 to 19% in 2020-2021). This study has detected a decrease in the diagnosis of trichomoniasis; however, this is probably due to the increase in the healthcare pressure triggered by the pandemic. More than 75% of the cases diagnosed in 2021 occurred in the second half, which suggests that special attention should be given to the evolution in the coming years once normality has been restored in hospitals. Moreover, these results warn of the lack of routine diagnosis of trichomoniasis during pregnancy and the absence of specific protocols for possible co-infections, which could become a strategy to reduce the growing trend of STIs, including T. vaginalis detection, as an interesting marker of sexual risk behaviors.

2.
Pathogens ; 13(2)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38392864

RESUMO

More than one million curable sexually transmitted infections occur every day. Trichomonas vaginalis is one of the main infections responsible for these epidemiological data; however, the diagnosis of this protozoan is still mainly based on microscopic and culture identification. The commercialization of immunological tests and the development of molecular techniques have improved the sensitivity of classical methods. Nevertheless, the fact that trichomoniasis is a neglected parasitic infection hinders the development of novel techniques and their implementation in routine diagnosis. This review article shows the different methods developed to identify T. vaginalis in population and the difficulties in diagnosing male and asymptomatic patients. The importance of including this parasite in routine gynecological screening, especially in pregnant women, and the importance of considering T. vaginalis as an indicator of high-risk sexual behavior are also discussed.

3.
J Med Chem ; 66(19): 13452-13480, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37729094

RESUMO

The AT-rich mitochondrial DNA (kDNA) of trypanosomatid parasites is a target of DNA minor groove binders. We report the synthesis, antiprotozoal screening, and SAR studies of three series of analogues of the known antiprotozoal kDNA binder 2-((4-(4-((4,5-dihydro-1H-imidazol-3-ium-2-yl)amino)benzamido)phenyl)amino)-4,5-dihydro-1H-imidazol-3-ium (1a). Bis(2-aminoimidazolines) (1) and bis(2-aminobenzimidazoles) (2) showed micromolar range activity against Trypanosoma brucei, whereas bisarylimidamides (3) were submicromolar inhibitors of T. brucei, Trypanosoma cruzi, and Leishmania donovani. None of the compounds showed relevant activity against the urogenital, nonkinetoplastid parasite Trichomonas vaginalis. We show that series 1 and 3 bind strongly and selectively to the minor groove of AT DNA, whereas series 2 also binds by intercalation. The measured pKa indicated different ionization states at pH 7.4, which correlated with the DNA binding affinities (ΔTm) for series 2 and 3. Compound 3a, which was active and selective against the three parasites and displayed adequate metabolic stability, is a fine candidate for in vivo studies.


Assuntos
Antiprotozoários , Benzamidas , Leishmania donovani , Parasitos , Trypanosoma brucei brucei , Trypanosoma cruzi , Animais , Antiprotozoários/química , DNA/metabolismo , DNA de Cinetoplasto/metabolismo , Imidazóis/química , Imidazóis/farmacologia , Leishmania donovani/metabolismo , Parasitos/efeitos dos fármacos , Parasitos/metabolismo , Benzamidas/química , Benzamidas/farmacologia
4.
An. R. Acad. Nac. Farm. (Internet) ; 89(2): 135-147, Abril - Junio 2023. ilus, graf, tab
Artigo em Espanhol | IBECS | ID: ibc-223520

RESUMO

Trichomonas vaginalis es el protozoo parásito responsable de una de las infecciones de transmisión sexual curables que presenta mayor incidencia anual en todo el mundo. Sin embargo, los métodos de diagnóstico empleados con mayor frecuencia no son lo suficientemente sensibles, siendo incapaces de detectar un elevado porcentaje de los casos, principalmente en individuos asintomáticos. Estas técnicas tradicionales tampoco son lo suficientemente rápidas, y la mayoría no son adecuadas para el diagnóstico de la infección en el varón, agravándose aún más la situación. En las últimas décadas, se han desarrollado nuevas pruebas para el diagnóstico de la tricomonosis, que muestran valores de sensibilidad, especificidad y rapidez mucho más aceptables, permitiendo además reducir el tiempo de diagnóstico. De esta manera, su puesta en práctica conduciría a la obtención de un resultado en pocas horas, facilitando el inicio del tratamiento en aquellos casos en los que este sea necesario. Ante esta situación, en el presente trabajo se lleva a cabo una revisión bibliográfica de las técnicas más relevantes, incluyendo pruebas disponibles para el diagnóstico en el varón, así como las que permiten detectar la presencia de coinfecciones, indicándose la utilidad y las ventajas e inconvenientes de cada una. (AU)


Trichomonas vaginalis is the protozoan parasite causative of one of the curable sexually transmitted infections that shows the highest annual incidence worldwide. However, the diagnostic methods most frequently used, are not sensitive enough and therefore, a large percentage of cases are not detected, especially in asymptomatic people. These traditional tests are not fast enough, and most of them are not suitable for carrying out diagnosis in men, with the consequent aggravation of the situation. In the last decades, new diagnostic techniques for trichomoniasis have been developed, which show much more acceptable sensitivity and specificity values, making it possible to reduce the time to diagnosis. Accordingly, their implementation could lead to a result in a few hours and thus, facilitate the start of treatment in those cases in which it is needed. In this framework, a bibliographic review of the most relevant techniques is carried out in the present work, including tests that are available for diagnosis in men, as well as for the detection of co-infections, highlighting their usefulness and both the advantages and disadvantages of each one. (AU)


Assuntos
Humanos , Trichomonas vaginalis , Vaginite por Trichomonas/diagnóstico , Infecções Assintomáticas , Infecções Sexualmente Transmissíveis/diagnóstico , Infecções Sexualmente Transmissíveis
5.
Acta Trop ; 234: 106607, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35907502

RESUMO

In this study, a new series of eleven 5-nitroindazole derivatives (10-20) and a related 6-nitroquinazoline (21) was synthesized and tested in vitro against different forms of the kinetoplastid parasite Trypanosoma cruzi, etiological agent of Chagas disease. Among these compounds, derivatives 11-14 and 17 showed trypanocidal profiles on epimastigotes (IC50 = 1.00-8.75 µM) considerably better than that of the reference drug benznidazole, BZ (IC50 = 25.22 µM). Furthermore, the lack of cytotoxicity observed for compounds 11, 12, 14, 17 and 18 over L929 fibroblasts, led to a notable selectivity (SI) on the extracellular replicative form of the parasite: SIEPI > 12.41 to > 256 µM. Since these five derivatives overpassed the cut-off value established by BZ (SIEPI ≥ 10), they were moved to a more specific assay against the intracellular and replicative form of T. cruzi, i.e, amastigotes. These molecules were not as active as BZ (IC50 = 0.57 µM) against this parasite form; however, all of them showed remarkable IC50 values lower than 7 µM. Special mention deserve compounds 12 and 17, whose SIAMA were > 246.15 and > 188.23, respectively. The results compiled in the present work, point to a positive impact over the trypanocidal activity of the electron withdrawing substituents introduced at position 2 of the N-2 benzyl moiety of these compounds, especially fluorine, i.e., derivatives 12 and 17. These outcomes, supported by the in silico prediction of good oral bioavailability and suitable risk profile, reinforce the 5-nitroindazole scaffold as an adequate template for preparing potential antichagasic agents.


Assuntos
Doença de Chagas , Tripanossomicidas , Trypanosoma cruzi , Doença de Chagas/tratamento farmacológico , Humanos , Indazóis , Relação Estrutura-Atividade , Tripanossomicidas/farmacologia , Tripanossomicidas/uso terapêutico
6.
J Enzyme Inhib Med Chem ; 37(1): 781-791, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35193444

RESUMO

Herein, we report the preparation of a panel of Schiff bases analogues as antiprotozoal agents by modification of the stereoelectronic effects of the substituents on N-1 and N-4 and the nature of the chalcogen atom (S, Se). These compounds were evaluated towards Trypanosoma cruzi and Trichomonas vaginalis. Thiosemicarbazide 31 showed the best trypanocidal profile (epimastigotes), similar to benznidazole (BZ): IC50 (31)=28.72 µM (CL-B5 strain) and 33.65 µM (Y strain), IC50 (BZ)=25.31 µM (CL-B5) and 22.73 µM (Y); it lacked toxicity over mammalian cells (CC50 > 256 µM). Thiosemicarbazones 49, 51 and 63 showed remarkable trichomonacidal effects (IC50 =16.39, 14.84 and 14.89 µM) and no unspecific cytotoxicity towards Vero cells (CC50 ≥ 275 µM). Selenoisosters 74 and 75 presented a slightly enhanced activity (IC50=11.10 and 11.02 µM, respectively). Hydrogenosome membrane potential and structural changes were analysed to get more insight into the trichomonacidal mechanism.


Assuntos
Antiprotozoários/farmacologia , Semicarbazonas/farmacologia , Trichomonas vaginalis/efeitos dos fármacos , Trypanosoma cruzi/efeitos dos fármacos , Antiprotozoários/síntese química , Antiprotozoários/química , Relação Dose-Resposta a Droga , Estrutura Molecular , Testes de Sensibilidade Parasitária , Semicarbazonas/síntese química , Semicarbazonas/química , Relação Estrutura-Atividade
7.
Mem Inst Oswaldo Cruz ; 116: e200560, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33566938

RESUMO

BACKGROUND: Anisakis simplex antigens present immunomodulatory properties by the induction of tolerogenic dendritic cells (DCs) in mice. OBJECTIVES: To study the capacity of DCs stimulated with A. simplex excretory-secretory (ES) or crude extract (CE) to generate Tregs. To investigate in vitro effects of antigens on the metabolic activity of splenocytes induced by LPS or CpG. METHODS: Phenotypic and functional characterization of T cells co-cultured with A. simplex-pulsed DCs was performed by flow cytometry. Lymphocyte mitochondrial respiratory activity was estimated by the Alamar Blue® Assay. FINDINGS: In C57BL/6J, CD4+CD25-Foxp3+ and CD8+CD25-Foxp3+ populations increased by CE-stimulated-DCs. In BALB/c, CE-stimulated-DCs caused the expansion of CD4+CD25+Foxp3+IL-10+ and CD8+CD25+Foxp3+IL-10+. IFN-γ expression raised in BALB/c CD4+CD25+ and CD4+CD25- for CE and ES, respectively. ES-stimulated-DCs increased CD4+CD25+ Foxp3+ and CD8+CD25- Foxp3+ expression in T cells. The association of ES or CE with LPS produced the increase in splenocyte activity in C57BL/6J. The association of CE with CpG decreased the proliferation caused by CpG in C57BL/6J. MAIN CONCLUSIONS: A. simplex increase the frequency of Tregs, which in turn produce IL-10 and IFN-γ. The host genetic base is essential in the development of anti-Anisakis immune responses (Th2, Th1, Treg).


Assuntos
Anisakis , Antígenos , Linfócitos T Reguladores , Animais , Antígenos/metabolismo , Medula Óssea , Células Dendríticas , Fatores de Transcrição Forkhead , Subunidade alfa de Receptor de Interleucina-2 , Larva , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
8.
Bioorg Med Chem Lett ; 37: 127843, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33556576

RESUMO

A series of 11 3-(ω-aminoalkoxy)-1-benzyl-5-nitroindazoles (2-12) has been prepared starting from 1-benzyl-5-nitroindazol-3-ol 13, and evaluated against sensitive and resistant isolates of the sexually transmitted protozoan Trichomonas vaginalis. Compounds 2, 3, 6, 9, 10 and 11 showed trichomonacidal profiles with IC50 < 20 µM against the metronidazole-sensitive isolate. Moreover, all these compounds submitted to cytotoxicity assays against mammalian cells exhibited low non-specific cytotoxic effects, except compounds 3 and 9 which displayed moderate cytotoxicity (CC50 = 74.7 and 59.1 µM, respectively). Those compounds with trichomonacidal effect were also evaluated against a metronidazole-resistant culture. Special mention deserve compounds 6 and 10, which displayed better IC50 values (1.3 and 0.5 µM respectively) than that of the reference drug (IC50 MTZ = 3.0 µM). The high activity of these compounds against the resistant isolate reinforces the absence of cross-resistance with the reference drug. The remarkable trichomonacidal results against resistant T. vaginalis isolates suggest the interest of 3-(ω-aminoalkoxy)-1-benzyl-5-nitroindazoles to be considered as good prototypes to continue in the development of new drugs with enhanced trichomonacidal activity, aiming to increase the non-existent drugs to face clinical resistance efficiently for those patients in whom therapy with 5-nitroimidazoles is contraindicated.


Assuntos
Antiparasitários/farmacologia , Indazóis/farmacologia , Tricomoníase/tratamento farmacológico , Trichomonas vaginalis/efeitos dos fármacos , Antiparasitários/síntese química , Antiparasitários/química , Relação Dose-Resposta a Droga , Resistência a Medicamentos/efeitos dos fármacos , Indazóis/síntese química , Indazóis/química , Estrutura Molecular , Relação Estrutura-Atividade , Tricomoníase/parasitologia
9.
Mem. Inst. Oswaldo Cruz ; 116: e200560, 2021. graf
Artigo em Inglês | LILACS | ID: biblio-1154882

RESUMO

BACKGROUND Anisakis simplex antigens present immunomodulatory properties by the induction of tolerogenic dendritic cells (DCs) in mice. OBJECTIVES To study the capacity of DCs stimulated with A. simplex excretory-secretory (ES) or crude extract (CE) to generate Tregs. To investigate in vitro effects of antigens on the metabolic activity of splenocytes induced by LPS or CpG. METHODS Phenotypic and functional characterization of T cells co-cultured with A. simplex-pulsed DCs was performed by flow cytometry. Lymphocyte mitochondrial respiratory activity was estimated by the Alamar Blue® Assay. FINDINGS In C57BL/6J, CD4+CD25-Foxp3+ and CD8+CD25-Foxp3+ populations increased by CE-stimulated-DCs. In BALB/c, CE-stimulated-DCs caused the expansion of CD4+CD25+Foxp3+IL-10+ and CD8+CD25+Foxp3+IL-10+. IFN-γ expression raised in BALB/c CD4+CD25+ and CD4+CD25- for CE and ES, respectively. ES-stimulated-DCs increased CD4+CD25+ Foxp3+ and CD8+CD25- Foxp3+ expression in T cells. The association of ES or CE with LPS produced the increase in splenocyte activity in C57BL/6J. The association of CE with CpG decreased the proliferation caused by CpG in C57BL/6J. MAIN CONCLUSIONS A. simplex increase the frequency of Tregs, which in turn produce IL-10 and IFN-γ. The host genetic base is essential in the development of anti-Anisakis immune responses (Th2, Th1, Treg).


Assuntos
Animais , Camundongos , Anisakis , Linfócitos T Reguladores , Antígenos/metabolismo , Medula Óssea , Células Dendríticas , Fatores de Transcrição Forkhead , Subunidade alfa de Receptor de Interleucina-2 , Larva , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
10.
Parasitol Res ; 119(6): 1915-1923, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32405804

RESUMO

Trichomoniasis is the most prevalent curable sexually transmitted infection (STI) worldwide and a risk factor for the acquisition of other STIs and adverse pregnancy outcomes. The objectives of this study were to determine the prevalence of T. vaginalis and related coinfections in women attending a third-level hospital of Madrid (Spain). A retrospective study of 24,173 vaginal exudates from women with suspected vaginitis was conducted between 2013 and 2017. Likewise, among T. vaginalis positive samples, co-occurrence with gonorrhea, chlamydia, syphilis, VIH, Mycoplasma hominis, and Ureaplasma urealyticum was checked. Moreover, seven T. vaginalis isolates from 2017 were randomly collected for endobionts, drug resistance, and microsatellite (MS) instability determinations. The prevalence of T. vaginalis was 0.8% between 2013 and 2017. Less than 20% of patients with trichomoniasis were submitted to a complete screening for other genital pathogens. From that, two patients were coinfected with chlamydia and three with syphilis. Surprisingly, 6.4% of positive samples were diagnosed among pregnant women, showing an alarming increase from 3.2% (2014) to 10% (2017). Among the isolates randomly analyzed, five carried T. vaginalis virus, five harbored mycoplasmas, and one was metronidazole-resistant. The molecular genotyping showed a high variability in the three MS evaluated. To our knowledge, this is the first study in Spain that evaluates the prevalence of trichomoniasis in general and pregnant population and includes biomolecular determinations. These results warn about the increasing prevalence and highlight the importance of including T. vaginalis detection in routine gynecological revisions with special emphasis on childbearing age women and patients with previous STIs.


Assuntos
Metronidazol/farmacologia , Simbiose , Centros de Atenção Terciária , Tricomoníase/epidemiologia , Trichomonas vaginalis , Adulto , Coinfecção , Resistência a Medicamentos , Feminino , Gonorreia/complicações , Humanos , Pessoa de Meia-Idade , Mycoplasma hominis/isolamento & purificação , Gravidez , Complicações Parasitárias na Gravidez/epidemiologia , Taxa de Gravidez , Prevalência , Estudos Retrospectivos , Espanha/epidemiologia , Tricomoníase/complicações , Tricomoníase/tratamento farmacológico
11.
Parasitol Res ; 118(10): 3019-3031, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31473857

RESUMO

The protozoan parasite Trichomonas vaginalis is a common human pathogen from one of the earliest-diverging eukaryotic lineages. At the transcriptional level, the highly conserved Inr element of RNA pol II-transcribed genes surrounds the transcription start site and is recognised by IBP39, a protein exclusive of T. vaginalis. Typical TATA boxes have not been identified in this organism but, in contrast, BLAST analyses of the T. vaginalis genome identified two genes encoding putative TATA-binding proteins (herein referred to as TvTBP1 and TvTBP2). The goal of this work was to characterise these two proteins at the molecular level. Our results show that both TvTBPs theoretically adopt the saddle-shaped structure distinctive to TBPs and both Tvtbp genes are expressed in T. vaginalis. TvTBP1 did not complement a Saccharomyces cerevisiae mutant lacking TBP; however, TvTBP1 and TvTBP2 proteins bound T. vaginalis DNA promoter sequences in EMSA assays. We propose that TvTBP1 may be part of the preinitiation transcription complex in T. vaginalis since TvTBP1 recombinant protein was able to bind IBP39 in vitro. This work represents the first approach towards the characterisation of general transcription factors in this early divergent organism.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Protozoários/metabolismo , Proteína de Ligação a TATA-Box/metabolismo , Trichomonas vaginalis/metabolismo , Modelos Moleculares , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Proteína de Ligação a TATA-Box/química , Proteína de Ligação a TATA-Box/genética , Transcrição Gênica , Trichomonas vaginalis/genética
12.
Toxins (Basel) ; 11(4)2019 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-31013660

RESUMO

Cantharidin (CTD) is a toxic monoterpene produced by blister beetles (Fam. Meloidae) as a chemical defense against predators. Although CTD is highly poisonous to many predator species, some have evolved the ability to feed on poisonous Meloidae, or otherwise beneficially use blister beetles. Great Bustards, Otis tarda, eat CTD-containing Berberomeloe majalis blister beetles, and it has been hypothesized that beetle consumption by these birds reduces parasite load (a case of self-medication). We examined this hypothesis by testing diverse organisms against CTD and extracts of B. majalis hemolymph and bodies. Our results show that all three preparations (CTD and extracts of B. majalis) were toxic to a protozoan (Trichomonas vaginalis), a nematode (Meloidogyne javanica), two insects (Myzus persicae and Rhopalosiphum padi) and a tick (Hyalomma lusitanicum). This not only supports the anti-parasitic hypothesis for beetle consumption, but suggests potential new roles for CTD, under certain conditions.


Assuntos
Acaricidas/toxicidade , Antiparasitários/toxicidade , Cantaridina/toxicidade , Besouros , Inseticidas/toxicidade , Animais , Afídeos/efeitos dos fármacos , Feminino , Larva/efeitos dos fármacos , Masculino , Nematoides/efeitos dos fármacos , Carrapatos/efeitos dos fármacos , Trichomonas vaginalis/efeitos dos fármacos
13.
ChemMedChem ; 13(12): 1246-1259, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29624912

RESUMO

Three different series of new 5-nitroindazole derivatives-1-(ω-aminoalkyl)-2-benzylindazolin-3-ones (series A; ten compounds), 3-(ω-aminoalkoxy)-2-benzylindazoles (series B; four compounds) and 3-alkylamino-2-benzylindazoles (series C; five compounds)-have been synthesized and evaluated against the protozoan parasites Trypanosoma cruzi, Leishmania amazonensis, and Trichomonas vaginalis: etiological agents of Chagas disease, cutaneous leishmaniasis, and trichomoniasis, respectively. Many indazoles of series A, B, and C were efficient against T. cruzi. Some compounds in series A, after successfully passing the preliminary screening for epimastigotes, exhibited activity values against amastigotes of several T. cruzi strains that were better than or similar to those shown by the reference drug benznidazole and displayed low nonspecific toxicity against mammalian cells. On the other hand, preliminary studies against promastigotes of L. amazonensis showed high leishmanicidal activity for some derivatives of series A and C. With regard to activity against T. vaginalis, some indazoles of series B and C were rather efficient against trophozoites of a metronidazole-sensitive isolate and showed low nonspecific toxicities toward Vero cell cultures. Additionally, some of these compounds displayed similar activity against metronidazole-sensitive and resistant isolates, showing the absence of cross-resistance between these derivatives and the reference drug.


Assuntos
Aminas/farmacologia , Indazóis/farmacologia , Tripanossomicidas/farmacologia , Aminas/síntese química , Aminas/química , Aminas/toxicidade , Animais , Chlorocebus aethiops , Indazóis/síntese química , Indazóis/química , Indazóis/toxicidade , Leishmania/efeitos dos fármacos , Camundongos , Estrutura Molecular , Testes de Sensibilidade Parasitária , Trichomonas vaginalis/efeitos dos fármacos , Tripanossomicidas/síntese química , Tripanossomicidas/química , Tripanossomicidas/toxicidade , Trypanosoma cruzi/efeitos dos fármacos , Células Vero
14.
Future Med Chem ; 10(8): 863-878, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29589477

RESUMO

AIM: Metronidazole is the most widely used drug in trichomoniasis therapy. However, the emergence of metronidazole-resistant Trichomonas vaginalis isolates calls for the search for new drugs to counter the pathogenicity of these parasites. RESULTS: Classification models for predicting the antitrichomonas activity of molecules were built. These models were employed to screen antiprotozoal drugs, from which 20 were classified as active. The in vitro experiments showed moderate to high activity for 19 of the molecules at 10 µg/ml, while 3 compounds yielded higher activity than the reference at 1 µg/ml. The 11 most active chemicals were evaluated in vivo using Naval Medical Research Institute (NMRI) mice. CONCLUSION: Benznidazole showed similar results as metronidazole, and can thus be considered as a potential candidate in antitrichomonas therapy.


Assuntos
Antiprotozoários/química , Antiprotozoários/farmacologia , Reposicionamento de Medicamentos/métodos , Tricomoníase/tratamento farmacológico , Trichomonas vaginalis/efeitos dos fármacos , Animais , Antiprotozoários/uso terapêutico , Análise Discriminante , Resistência a Medicamentos , Feminino , Humanos , Metronidazol/química , Metronidazol/farmacologia , Metronidazol/uso terapêutico , Camundongos , Nitroimidazóis/química , Nitroimidazóis/farmacologia , Nitroimidazóis/uso terapêutico , Vaginite por Trichomonas/tratamento farmacológico
15.
An. R. Acad. Farm ; 83(1): 10-47, ene.-mar. 2017. ilus, tab, graf
Artigo em Espanhol | IBECS | ID: ibc-161566

RESUMO

La tricomonosis urogenital humana, causada por el parásito Trichomonas vaginalis, es una de las infecciones de transmisión sexual (I.T.S.) de mayor prevalencia en el mundo, con un total de 276 millones de casos cada año, según la OMS. Algunos autores la han calificado como una enfermedad desatendida u olvidada ligada a la pobreza, a pesar de que más del 50% de las I.T.S. curables se deben a este agente etiológico. La tricomonosis cursa con un rango amplio de manifestaciones clínicas, que van desde casos asintomáticos hasta cuadros más graves e invasivos de los conductos genitourinarios. Se ha relacionado la infección con el riesgo de adquisición y transmisión del VIH y de lesiones preneoplásicas de cérvix y próstata. Este protozoo parásito presenta una gran variabilidad intraespecífica en su comportamiento patogénico, probablemente por el tamaño y complejidad de su genoma, con más de 60.000 genes codificantes. Es capaz de sobrevivir y colonizar un nicho complejo sometido a constantes fluctuaciones, el aparato genitourinario, pasando desapercibido en muchos casos. El tamaño y complejidad de su genoma convierten a T. vaginalis en un parásito de gran interés científico para el estudio de los mecanismos de patogenia y evasión de la respuesta inmune (AU)


Trichomonosis is one of the most prevalent nonviral sexually transmitted infection (S.T.I.) worldwide, with an estimated 276 million cases per year according to WHO overview. Little attention is paid to this disease, although more than 50% of S.T.I. curable are caused by this protozoon. Clinically, Trichomonas vaginalis infection can produce a wide range of pathological manifestations, from asymptomatic presentation to severe inflammatory and invasive lesions in the genitourinary tract of both men and women. The possible role displayed by T. vaginalis as a viral vector might also explain its role as a risk factor in the development of cervical and prostate neoplasia. In addition, trichomonosis is strongly associated with transmission and acquisition of other bacterial and viral pathogens like HIV. T. vaginalis is a very complex organism and has developed diverse mechanisms for the colonization of the genitourinary tract probably due to its extensive genome. This parasite must survive in a hostile environment exposed to continue fluctuations. Surprisingly, T. vaginalis possesses one of the largest and most repetitive genomes, with a core set of 60,000 protein-coding genes. According to all these features, T. vaginalis could be considered an excellent model of parasite to be studied in order to better understand the dynamics and immune evasion mechanisms of such versatile parasite (AU)


Assuntos
Humanos , Masculino , Feminino , Trichomonas vaginalis/isolamento & purificação , Infecções Sexualmente Transmissíveis/tratamento farmacológico , Infecções Sexualmente Transmissíveis/epidemiologia , Infecções por HIV/complicações , Infecções por HIV/transmissão , Glicólise , Descarboxilação , Metronidazol/uso terapêutico , Trichomonas vaginalis/citologia , Trichomonas vaginalis/patogenicidade , Técnicas de Genotipagem , Sensibilidade e Especificidade , Fatores de Risco
16.
Eur J Med Chem ; 115: 295-310, 2016 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-27017556

RESUMO

Two series of new 5-nitroindazole derivatives, 1-substituted 2-benzylindazolin-3-ones (6-29, series A) and 3-alkoxy-2-benzyl-2H-indazoles (30-37, series B), containing differently functionalized chains at position 1 and 3, respectively, have been synthesized starting from 2-benzyl-5-nitroindazolin-3-one 5, and evaluated against the protozoan parasites Trypanosoma cruzi and Trichomonas vaginalis, etiological agents of Chagas disease and trichomonosis, respectively. Many indazolinones of series A were efficient against different morphological forms of T. cruzi CL Brener strain (compounds 6, 7, 9, 10 and 19-21: IC50 = 1.58-4.19 µM for epimastigotes; compounds 6, 19-21 and 24: IC50 = 0.22-0.54 µM for amastigotes) being as potent as the reference drug benznidazole. SAR analysis suggests that electron-donating groups at position 1 of indazolinone ring are associated with an improved antichagasic activity. Moreover, compounds of series A displayed low unspecific toxicities against an in vitro model of mammalian cells (fibroblasts), which were reflected in high values of the selectivity indexes (SI). Compound 20 was also very efficient against amastigotes from Tulahuen and Y strains of T. cruzi (IC50 = 0.81 and 0.60 µM, respectively), showing low toxicity towards cardiac cells (LC50 > 100 µM). In what concerns compounds of series B, some of them displayed moderate activity against trophozoites of a metronidazole-sensitive isolate of T. vaginalis (35 and 36: IC50 = 9.82 and 7.25 µM, respectively), with low unspecific toxicity towards Vero cells. Compound 36 was also active against a metronidazole-resistant isolate (IC50 = 9.11 µM) and can thus be considered a good prototype for the development of drugs directed to T. vaginalis resistant to 5-nitroimidazoles.


Assuntos
Doença de Chagas/tratamento farmacológico , Indazóis/farmacologia , Indazóis/uso terapêutico , Trichomonas/efeitos dos fármacos , Trypanosoma cruzi/efeitos dos fármacos , Animais , Indazóis/química , Relação Estrutura-Atividade
17.
Parasitology ; 143(1): 34-40, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26525913

RESUMO

A selection of 1,2-disubstituted 5-nitroindazolin-3-ones (1-19) and 3-alkoxy-5-nitroindazoles substituted at positions 1 (20-24) or 2 (25-39) from our in-house compound library were screened in vitro against the most common curable sexually transmitted pathogen, Trichomonas vaginalis. A total of 41% of the studied molecules (16/39) achieved a significant activity of more than 85% growth inhibition at the highest concentration assayed (100 µg mL(-1)). Among these compounds, 3-alkoxy-5-nitroindazole derivatives 23, 24, 25 and 27 inhibited parasite growth by more than 50% at 10 µg mL(-1). In addition, the first two compounds (23, 24) still showed remarkable activity at the lowest dose tested (1 µg mL(-1)), inhibiting parasite growth by nearly 40%. Their specific activity towards the parasite was corroborated by the determination of their non-specific cytotoxicity against mammalian cells. The four mentioned compounds exhibited non-cytotoxic profiles at all of the concentrations assayed, showing a fair antiparasitic selectivity index (SI > 7·5). In silico studies were performed to predict pharmacokinetic properties, toxicity and drug-score using Molinspiration and OSIRIS computational tools. The current in vitro results supported by the virtual screening suggest 2-substituted and, especially, 1-substituted 3-alkoxy-5-nitroindazoles as promising starting scaffolds for further development of novel chemical compounds with the main aim of promoting highly selective trichomonacidal lead-like drugs with adequate pharmacokinetic and toxicological profiles.


Assuntos
Antitricômonas/farmacologia , Indazóis/farmacologia , Tricomoníase/tratamento farmacológico , Trichomonas vaginalis/efeitos dos fármacos , Álcoois/química , Animais , Antitricômonas/efeitos adversos , Antitricômonas/química , Sobrevivência Celular , Chlorocebus aethiops , Simulação por Computador , Indazóis/efeitos adversos , Indazóis/química , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade , Células Vero
18.
Z Naturforsch C J Biosci ; 70(9-10): 275-80, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26444350

RESUMO

Essential oils (EOs) obtained from two crops and populations of thujone-free cultivated Artemisia absinthium were tested against two nematode models, the mammalian parasite Trichinella spiralis, and the plant parasitic root knot nematode Meloidogyne javanica. The EOs were characterized by the presence of (Z)-epoxyocimene and chrysanthenol as major components and showed time and population dependent quantitative and qualitative variations in composition. The EOs showed a strong ex vivo activity against the L1 larvae of the nematode Trichinella spiralis with a reduction of infectivity between 72 and 100% at a dose range of 0.5-1 mg/ml in absence of cytotoxicity against mammalian cells. Moreover, the in vivo activity of the EO against T. spiralis showed a 66% reduction of intestinal adults. However, these oils were not effective against M. javanica.

19.
Mem. Inst. Oswaldo Cruz ; 110(5): 693-699, Aug. 2015. tab, ilus
Artigo em Inglês | LILACS | ID: lil-755897

RESUMO

Artemisia absinthium is an aromatic and medicinal plant of ethnopharmacological interest and it has been widely studied. The use ofA. absinthiumbased on the collection of wild populations can result in variable compositions of the extracts and essential oils (EOs). The aim of this paper is the identification of the active components of the vapour pressure (VP) EO from a selected and cultivated A. absinthiumSpanish population (T2-11) against two parasitic protozoa with different metabolic pathways: Trypanosoma cruzi andTrichomonas vaginalis. VP showed activity on both parasites at the highest concentrations. The chromatographic fractionation of the VP T2-11 resulted in nine fractions (VLC1-9). The chemical composition of the fractions and the antiparasitic effects of fractions and their main compounds suggest that the activity of the VP is related with the presence oftrans-caryophyllene and dihydrochamazulene (main components of fractions VLC1 and VLC2 respectively). Additionally, the cytotoxicity of VP and fractions has been tested on several tumour and no tumour human cell lines. Fractions VLC1 and VLC2 were not cytotoxic against the nontumoural cell line HS5, suggesting selective antiparasitic activity for these two fractions. The VP and fractions inhibited the growth of human tumour cell lines in a dose-dependent manner.

.


Assuntos
Humanos , Artemisia absinthium/química , Óleos Voláteis/farmacologia , Extratos Vegetais/farmacologia , Trichomonas/efeitos dos fármacos , Trypanosoma cruzi/efeitos dos fármacos , Linhagem Celular , Relação Dose-Resposta a Droga , Cromatografia Gasosa-Espectrometria de Massas , Óleos Voláteis/isolamento & purificação , Extratos Vegetais/isolamento & purificação
20.
Mem Inst Oswaldo Cruz ; 110(5): 693-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26107187

RESUMO

Artemisia absinthium is an aromatic and medicinal plant of ethnopharmacological interest and it has been widely studied. The use ofA. absinthium based on the collection of wild populations can result in variable compositions of the extracts and essential oils (EOs). The aim of this paper is the identification of the active components of the vapour pressure (VP) EO from a selected and cultivated A. absinthium Spanish population (T2-11) against two parasitic protozoa with different metabolic pathways: Trypanosoma cruzi and Trichomonas vaginalis. VP showed activity on both parasites at the highest concentrations. The chromatographic fractionation of the VP T2-11 resulted in nine fractions (VLC1-9). The chemical composition of the fractions and the antiparasitic effects of fractions and their main compounds suggest that the activity of the VP is related with the presence of trans-caryophyllene and dihydrochamazulene (main components of fractions VLC1 and VLC2 respectively). Additionally, the cytotoxicity of VP and fractions has been tested on several tumour and no tumour human cell lines. Fractions VLC1 and VLC2 were not cytotoxic against the nontumoural cell line HS5, suggesting selective antiparasitic activity for these two fractions. The VP and fractions inhibited the growth of human tumour cell lines in a dose-dependent manner.


Assuntos
Artemisia absinthium/química , Óleos Voláteis/farmacologia , Extratos Vegetais/farmacologia , Trichomonas/efeitos dos fármacos , Trypanosoma cruzi/efeitos dos fármacos , Linhagem Celular , Relação Dose-Resposta a Droga , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Óleos Voláteis/isolamento & purificação , Extratos Vegetais/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...